LARGE BARGRAPH

OCB557-A For Analogue Signals

Owner's Manual

Metrix Electronics Limited

Minchens Court, Minchens Lane, Bramley, RG26 5BH, U.K. Tel: +44 (0)845 034 3234, Fax: +44 (0)845 034 3233 E-mail: sales@metrix-electronics.com, Web: www.metrix-electronics.com

INDEX

Page

Large Bargraph OCB557-A	5
Specifications	6
Parameters	7
Linearizing Methods	9
LINTAB TABLIN TABTAB POLYNOM	10 11 12 13
Terminals	14
Dimensions	14
Service Menu – HTEST	15

Large Bargraph OCB557-A

- $\sqrt{}$ Inputs DC or AC true RMS
- ✓ Process Signals 0/4 20 mA
- $\sqrt{}$ Thermometer Pt-100, Pt-1000
- $\sqrt{}$ Thermocouples J, K, R, S, T, B, C
- √ 50 or 100 Segments, 250 to 1000 mm
- $\sqrt{3}$ or 6 digit Display
- $\sqrt{}$ Linearizing free programmable

OCB557-A is a large display with one 250mm bar. Each bar contains 100 red LED segments.

The digital display with three digits is standard. It measures the input signal with high resolution. In programming mode the display shows the menu parameters.

Nearly any DC or AC signal can be applied, such as RTD and Thermocouples, Process Signals, Frequencies and Pulses, Resistors and Potentiometers, Strain Gauges and many others. The signal is processed and scaled at the display and at the bargraph in required process values.

Four linearizing methods are incorporated for non-linear signals or non-linear display values. Also a Polynom linearizing method can be used for signals which can be described by a Polynom of fifth degrees.

All DIN thermocouples can have the cold junction compensated automatically with internal sensor or can be compensated externally. Also RTD thermometers such as Pt-100, Pt-200 and Ni can be connected and processed.

Model OCB557-A is enclosed in a black aluminium cabinet and supplied from the mains or DC source (Option). A keyboard at the rear permits setting of process parameters.

SPECIFICATIONS

Displays: Bar, red 100 Segments, 38 mm/bar, height 253 mm. Digital Display: 3 digit display 20mm, 0 ... 999 with decimal point

Inputs:	 * Voltage 200mV to 250V DC or true R.M.S. * Currents 20mA to 5A DC or true R.M.S. * Thermocouples J, K, R, S, T, B, C and Pt-100, Pt-200 and Ni.
Accuracy:	DC: \pm (0.02%+1digit) from value. RMS: DC - 5 kHz: \pm (0.1% from Value+ 3 Digits). Pt-, Ni-: \pm (1°C + 1 Digit). T/C: \pm (1°C + 1 Digit).

Tempco:	\pm 25 ppm/ °C.		
A-D-C:	±100 000 Mea	suring Increments scalable. Sampling Rate 200ms.	
Linearity:	± (1 LSB + 1 Digit).		
Tara	The Tara Function can be activated in the menu step <i>tArA</i> . Applying the key SET the display shortly shows <i>tArA</i> and sets to zero. Applying the key SET for second time the display shows <i>notArA</i> and returns to follow the non-tare signal.		
Filter	An averaging filter with constants 1 to 99 is incorporated.		
Supply:	115/230V, 10%, 48 60 Hz. Option 24VDC		
Terminals:	Supply: Signals:	Mains Connector D-SUB	
Cabinet:	Aluminium black coated cabinet, IP65 at the front, for panel, wall or ceiling mount.		

PARAMETERS !For setting of new parameters an external 6 digit display is required or the instrument has to be returned to the factory!

References to Set Points and dual bars below do NOT apply to the OCB557.

The key **MENU** opens the Menu. The required parameter will be confirmed with **ACK**. . With **UP** or **DOWN** the parameters will be set.

The flashing digit - Cursor - can be positioned with **ACK**. The sign and the decimal point can be set after the cursor is positioned outside the display range (none of the digit is flashing).

The key **UP** sets the decimal point, the key **DOWN** sets the sign. The key **SET** terminates the programming and the display returns to the measuring mode.

KEY	DISPLAY	FUNCTION		
MENU	SEt Sen	Selection of the input characteristic		
	LinEAr	Linear Characteristic for DC and AC Signals		
	POLYn	Polynom fifth dearee		
	LintAb	Linearizer Type 1		
	tabLin	Linearizer Type 2		
	tabtab	Linearizer Type 3		
	Pt 100	RTD Thermometer with 1000 @ 0°C		
	tC E	Thermocouple E with external compensation		
	tCC E	Thermocouple E with internal compensation		
	tC J	Thermocouple J with external compensation		
	tCC J	Thermocouple J with internal compensation		
	tC L	Thermocouple K with external compensation		
	tCC L	Thermocouple K with internal compensation		
	tC S	Thermocouple S with external compensation		
	tCC S	Thermocouple S with internal compensation		
	tC b	Thermocouple B with external compensation		
	tCC b	Thermocouple B with internal compensation		
	tC t	Thermocouple T with external compensation		
	tCC t	Thermocouple T with internal compensation		
	tC C	Thermocouple C with external compensation		
	tCC C	Thermocouple C with internal compensation		
	Cold	Cold Junction Temperature		
MENU	SetInP	0.0 1 Setting for bipolar inputs, e.g. 0-20mA, 0-2V etc.		
		0.2 1 Setting for shifted inputs, e.g. 4-20mA.		
		-1 1 Setting for bipolar input signals, e.g. –20 +20V.		
MENU	Set LO	Display value at minimum input signal e.g. for 4mA = 000000.		
MENU	Set HI	Display value at maximum input signal e.g. 20mA = 50000.		
MENU	bAr LO	Bar value for minimum signal e.g. for 4mA = 0.		
MENU	bAr HI	Bar value for maximum signal e.g. 20mA = 100 Segments.		
MENU	tArA	Tara of the display OFF or ON. When ON is selected, the key SET is activated and		
		the display will be set to zero.		
MENU	OrdEr	Display resolution C.ddddd to CCCCCC.		
		Option: Display in °C or °F		
		tmp-C.d from -99.0 °C to 999.0 °C		
		tmp-C from -99 °C to 999 °C		
		tmp-F.d from -99.0 °F to 999.0 °F		
		tmp-F from -99 °F to 999 °F		
MENU	Count	Counting of the LSD (last significant digit): $cnt 1 = 1, 2, 39, 0,$		
		cnt 2 = 2, 4, 6, 8, 0		
		cnt 5 = 5, 0, 5, 0,		
		cnt 0 = dummy zero		
MENU	dISPL	dSP 1 16. Number of sample measurements for one display change.		
MENU	FILtEr	OFF, 1 99. Averaging Filter.		
MENU	FnSP1	Function of the relay SP1.Selection between OPn and CLA at the alarm conditions.		
		-		

	SP 1 HSt 1	(OPn = open in Non-Alarm con Alarm conditions and open at t Set Point 1. Selection: -999999 arrives at the SP1 or higher va Hysterese of SP 1. Selection: -	nditions and closed at the SP, CLS = closed in Non- he SP). Ito 9999999. The relay is activated when the display lues 9999999 to 9999999
MENU MENU MENU	An Fn bAUd Adr rS SEL bAr	Similar for Set Point : Analogue Outputs OFF or ON. Baud Rate 1200 to 19200 bd. Address: rS 232 (RS232 activa Display Type: no bAr bAr 30 d3-b30 d6-b30 bAr 50 d3-b50 d6-b50 bAr 100 d3-100 d3-200 d6-200	2(SP2) to Set Point 8(SP8) When ON, the outputs are activated. atted) or Adr 01 31 for RS485. Only for digital displays 30 Segments 3 Digit, 30 Segments 6 Digit, 30 Segments 50 Segments 3 Digit, 50 Segments 6 Digit, 50 Segments 100 Segments 3 Digit, 100 Segments 6 Digit, 200 Segments 6 Digit, 200 Segments 6 Digit, 200 Segments
MENU MENU	Fn bAr StArt	Bar Type: HLF, FLL or 3br Measuring Mode	

FLL

3br

PARAMETERS (Set Points and Bar Type) The key **MENU** opens the Menu. The required parameter will be confirmed with **ACK**. With **UP** or **DOWN** the parameters will be set. The key **SET** terminates the programming and the display returns to the measuring mode.

HLF

KEY	DISPLAY	FUNCTION
MENU	SP1	Set Point 1. Selection: 1 to 100%. The relay is activated when the display
		arrives at the SP1 or higher values
	Fn1	Function of the relay SP1. Selection OPn or CLS at the alarm conditions.
		OPn = open in Non-Alarm conditions and closed at the SP.
		CLS = closed in Non-Alarm conditions and open at the SP.

.... Similar for Set Points 2(SP2) Set Point 4(SP4)

MENU	bAr	Bar Type:	HLF, FLL or 3br
MENU	StA	Measuring N	lode

Negative measured values are displayed with two decimal points at the 3 digits display, e.g. -0.25 = 02.5. and with all decimal point flashing with 6 digit display, e.g. -250 = 0.0.0.2.5.0.

LINEARIZING METHODS

The implemented Software offers four linearizing methods. They can be selected in the menu Step *Set Sen* as POLYN, LINTAB, TABLIN and TABTAB.

POLYNOM

The implemented Polynom is of fifth degree. The coefficients are 6 digits with sign and decimal point free programmable, the power of the coefficients can be selected from 0 to \pm 5. The Polynom can be entered with the keyboard or via the serial data port in a format:

 $\mathsf{DISPLAY} = \pm \ \mathsf{Coef} \ 5 x 10^{\pm 5} \pm \ \mathsf{Coef} \ 4 x 10^{\pm 4} \pm \ \mathsf{Coef} \ 3 x 10^{\pm 3} \pm \ \mathsf{Coef} \ 2 x 10^{\pm 2} \pm \ \mathsf{Coef} \ 1 x 10^{\pm 1} \pm \ \mathsf{Coef} \ 0 x 10^{\pm 0}$

LINTAB

Will be used in applications in which a linear signal generates non-linear display readings. Up to 38 linearizing points are available.

TABLIN

Will be used in applications in which a non-linear signal generates linear display readings. Up to 38 linearizing points are available.

TABTAB

Will be used in applications in which a non-linear signal generates non-linear display readings. The input signal is shown at the display; with the keyboard the values can be overwritten to required values. Up to 19 points are available for this linearizing type.

LINTAB

Linear input signal, non-linear display readings. Example: Linearizing in 7 points.

_	10		1
	IU		
_		-	

Range Setting:SetLo = 0, SetHi = 100Type of Linearizing:SetSEn = LinTabLinearizing Points:Coef = 7Position of first linearizing point:Tb st = 0

The input signal of 0-100mV (Fig. 1) is subdivided into 7 points. This determines the parameter **tb in**.

$$\frac{\text{Set Hi}}{\text{Coef - 1}} = \frac{100}{7 \cdot 1} = 16,6667$$

The points will be assigned to display values:

Tb1	for	0mV	→	20
Tb2	for	16.7mV	→	26
Tb3	for	33.3mV	→	35
Tb4	for	50mV	→	44
Tb5	for	66.7mV	→	55
Tb6	for	83.3mV	→	72
Tb7	for	100mV	→	12030

TABLIN

Non-linear input signal, linear display readings. Example: Linearizing in 7 Points.

Range Setting:SetLo = 0, SetHi = 1000Type of Linearizing:SetSEn = TabLinLinearizing Points:Coef = 7Position of first linearizing point:Tb st = 0

The input signal of 0-1000mV (Fig. 2) is subdivided into 7 points. This determines the parameter tb in.

$$\frac{\text{Set Hi}}{\text{Coef - 1}} = \frac{1000}{7 - 1} = 166,667$$

The points will be assigned to display values:

Tb1	for	0 mV	→	0
Tb2	for	200 mV	→	166.7
Tb3	for	380 mV	→	333.3
Tb4	for	570 mV	→	500
Tb5	for	720 mV	→	666.7
Tb6	for	870 mV	→	833.3
Tb7	for	1000 mV	→	1000

TABTAB

The input and the display readings are non-linear.

The instrument measures the input signal. With the keyboard the readings can be corrected upon demand.

Parameter			
6 Digit		4 Digit	
Set Lo = 0)	SetL	
Set Hi = 1	00	SetH	
SetSEn= ta	abtab	ttAb	
CoEf = 1	4	CoEf	
tb st = 0)	tbst	
tb In = 0)	tbln	
tbi 01 = 1	0	ti01	
tbd 01 = 0)	td01	
tbi 02 = 1	5	ti02	
tbd 02 = 3	80	td02	
tbi 03 = 2	20	ti03	
tbd 03 = 5	55	td03	
tbi $04 = 3$	80	ti04	
tbd 04 = 7	0	td04	
tbi 05 = 4	5	ti05	
tbd 05 = 8	80	td05	
tbi $06 = 6$	55	ti06	
tbd 06 = 8	85	td06	
tbi 07 = 9	00	ti07	
tbd 07 = 9	00	td07	

Fig. 3

Range Setting:	SetLo = 0, SetHi = 100
Type of Linearizing:	SetSEn = TabTab
Linearizing Points:	Coef = 14
The parameters tb st and tb	In are not relevant and are set to 0.

Programming steps shown for first two linearizing points:

Key MENU	Display SetSEn	
ACK	tAbtAb	select with UP or DOWN
MENU	CoEF	
ACK	14 COE	select with UP or DOWN
MENU	td St, tb In	The setting is not relevant. Both set to 0.
MENU	tbi 01	Apply the first point of the input signal from the calibrator.
ACK	XXXXXX	The value from previous programming is shown.
SET	LinEAr	Display changes for momentary value from the calibrator.
SET	StorE	The momentary signal value is memorized and displayed.
MENU	tbd 01	Recall of the first display value.
ACK	XXXXXX	Select the required display reading with UP, DOWN and ACK.
MENU	tbi 02	Apply the second point of the input signal from the calibrator.
ACK	XXXXXX	program all 14 linearizing points as shown in this example. Press MENU followed by SET at the end. The display changes into the measuring mode.

POLYNOM

The implemented Polynom is of fifth degree. The coefficients are 6 digits with sign and decimal point free programmable, the power of the coefficients can be selected from 0 to \pm 5.

The Polynom can be entered with the keyboard or via the serial data port in a format:

$\mathsf{DISPLAY} = \pm \ \mathsf{Coef} \ 5 x 10^{\pm 5} \pm \ \mathsf{Coef} \ 4 x 10^{\pm 4} \pm \ \mathsf{Coef} \ 3 x 10^{\pm 3} \pm \ \mathsf{Coef} \ 2 x 10^{\pm 2} \pm \ \mathsf{Coef} \ 1 x 10^{\pm 1} \pm \ \mathsf{Coef} \ 0 x 10^{\pm 0} \pm \ \mathsf{Coef} \ \mathsf{Co$

Example

Measuring Range	-1V +1V	selected in Menu, Step Set In
Coef 5 = 10 Coef 5 = 1	$\begin{array}{l} \text{Coef 2} = 6 \\ \text{Coef 2} = 0 \end{array}$	
Coef $4 = 8$ Coef $4 = 0$	$\begin{array}{l} \text{Coef 1} = 2 \\ \text{Coef 1} = 0 \end{array}$	
Coef $3 = 8$ Coef $3 = 0$	$\begin{array}{l} \text{Coef } 0 &= 0 \\ \text{Coef } 0 &= 0 \end{array}$	

TERMINALS - DC Signals

DIMENSIONS

SERVICE MENU - HtESt

The **HtESt** Service Menu permits the calibration of the measuring range and the activation of the implemented options. After the supply is applied to the instrument, press the key **SET** when the text appears at the display. The display segments are checked the signal channel can be calibrated, the set points (option) controlled and the analogue outputs (option) generated. The key **MENU** increments the test steps forward, the key **SET** backward.

Segments	All display segments are activated
AdC	ADC internal DC value of the input signal ATTENTION: Apply zero input signal prior entering this Step!
1.25XXX	Apply zero input signal. The display shows the internal reference of 1.25V. To calibrate the zero reading, press DOWN . The display shows Ac LO . Keep pressing ACK until the display shows EE StO . The zero reading is stored.
2.2XXXX	Apply the maximum signal value and wait until the display reading is quiet. Press UP . The display shows AC HI . Keep pressing ACK until the display shows EE StO . The maximum reading is stored.
rES	The display shortly shows <i>rES</i> and switches into measuring mode. Leave the maximum signal value applied. The display reading corresponds to the value set in the menu step Set HI of the main menu.
SP1	Set Point 1 and the Relay 1 are activated.
SP8 Out-10 Out -5 Out 0 Out 5 Out 10 StArt	Set Point 8 and the Relay 8 are activated. Analogue Output -10V and 0/4 mA are generated (0 or 4mA selectable). Analogue Output -5V and 5/8 mA are generated. Analogue Output 0V and 10/12 mA are generated. Analogue Output 5V and 15/16 mA are generated. Analogue Output 10V and 20 mA are generated. Measuring Mode.