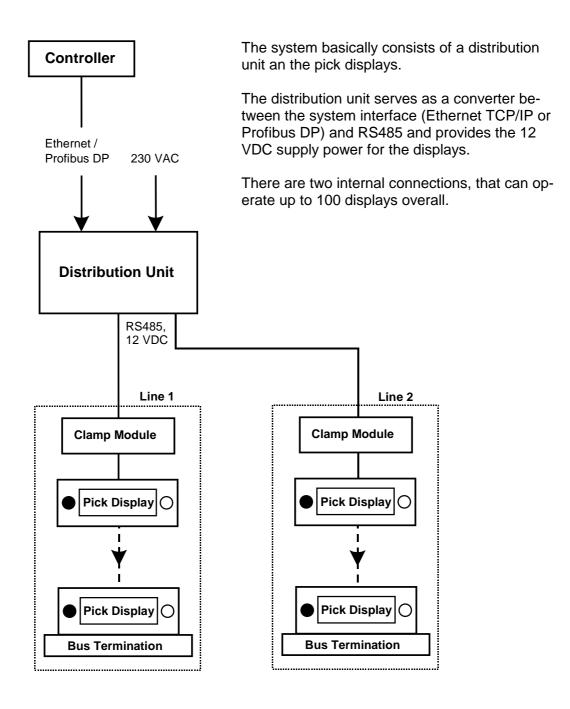


mipick

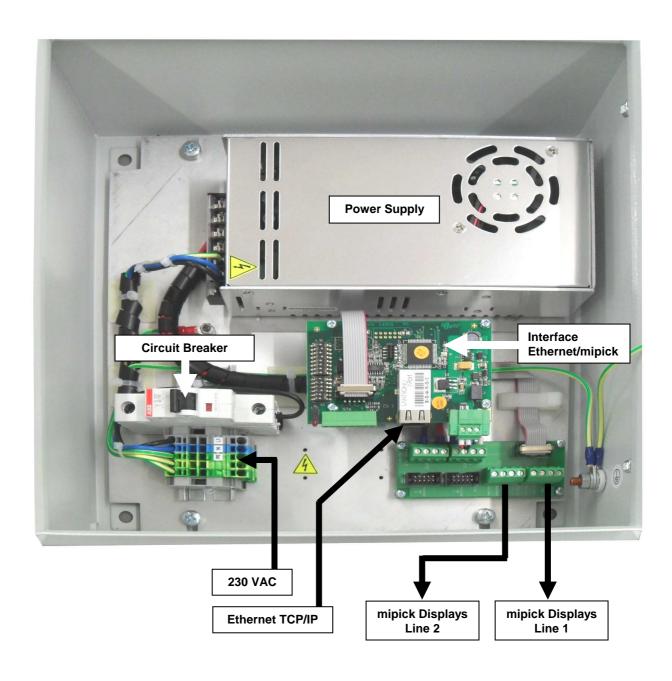
Pick-by-Light System

General System Description

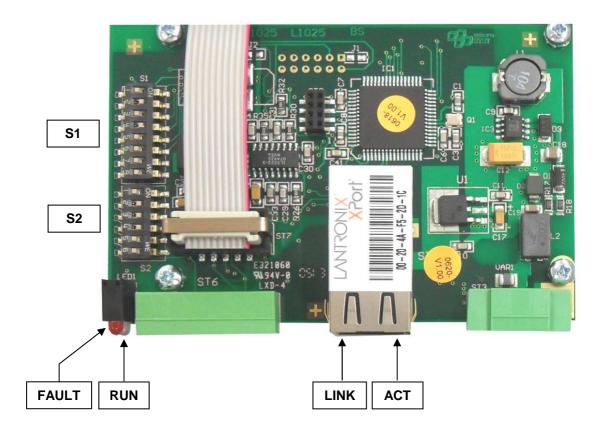
Index


1	SYS	STEM OVERVIEW	4
2	СО	MPONENTS	5
	2.1	Distribution Unit	5
	2.2 2.2.	Distribution Unit for Ethernet TCP/IP 1 Distribution Unit for Profibus DP	5 8
	2.3	Pick Displays	12
3	AS	SEMBLY	14
		Shaft Machining 1 Light Sensor (optional) 2 Shaft Termination / Clamp Module	14 14 15
	3.2	Mounting the Shaft	15
	3.3	Mounting the Distribution Unit	15
4	WIF	RING	16
	4.1	Distribution Unit	17
	4.2	Clamp Module	18
	4.3	Pick Displays	18
	4.4	Bus Termination Board	19
	4.5	Light Sensor (optional)	19
5	ETI	HERNET	20
	5.1	Configuration of the Ethernet Interface	20
		Ethernet Communication 1 Transmit "Commands" 2 Receive "Status Messages"	22 23 24

6	PROFIBU	IS DP	25
	6.1.1 GSD 6.1.2 Conf	figuration Data r Parameter Data	25 25 25 26 26
	6.2.1 Trans	mmunication asmit "Commands" eive "Status Messages"	27 28 29
7	FRAME S	TRUCTURE	31
	7.1 Structu	ure of Commands	31
	7.2.1 Com 7.2.2 Even	ure of Status Messages nmand Confirmation nt Message Member Message	31 31 31 32
	7.3.1 Show 7.3.2 Delet 7.3.3 Quer 7.3.4 Lamp 7.3.5 Quer	te Display ry Device Type	33 33 34 34 35 35
	7.4 Device	e-Specific Frames	36
8	VERSION	IS OVERVIEW	38



1 System Overview



- 2 Components
- 2.1 Distribution Unit
- 2.2 Distribution Unit for Ethernet TCP/IP

Inteface Ethernet / mipick

LED	Status	Meaning
	Green	Full-Duplex
ACT	Yellow	Half-Duplex
	Off	No network activity
	Green	Physical network connection with 100 MBaud
LINK	Yellow	Physical network connection with 10 MBaud
	Off	No physical network connection
FAULT	Red	No active TCP/IP connection
FAULT	Off	Active TCP/IP connection
RUN	Green	No data traffic at the serial interface
KUN	Blinking	Data traffic at the serial interface

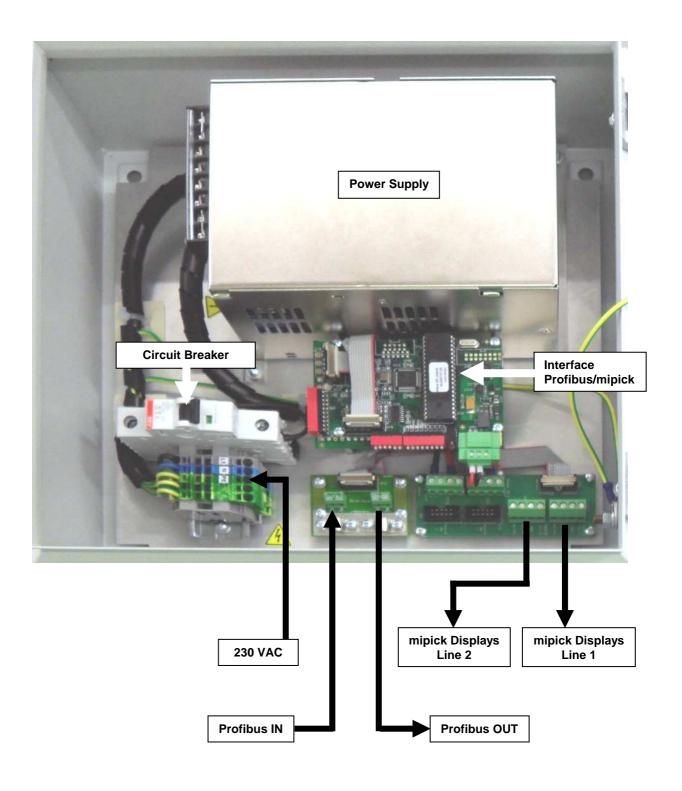
Positions marked with "■" are fixed and must not be changed!

Switch S1: Options

DIP	ON	OFF
1	Test mode: All displays show their own RS485 address or the LED is switched on (if no displays available). There should not be Ethernet communication at the same time!	Normal mode
Use 128 RS485 addresses (0127) for the RS485 cycle,		Use 64 RS485 addresses (063) for the RS485 cycle, bus message C2 locked
3		
4	Send bus member messages (C1, C2) automatically at a change (and after the Ethernet connection has been established)	Send bus member messages (C1, C2) only at a query (C0, C1 or C2)
5		
6		
7		
8		

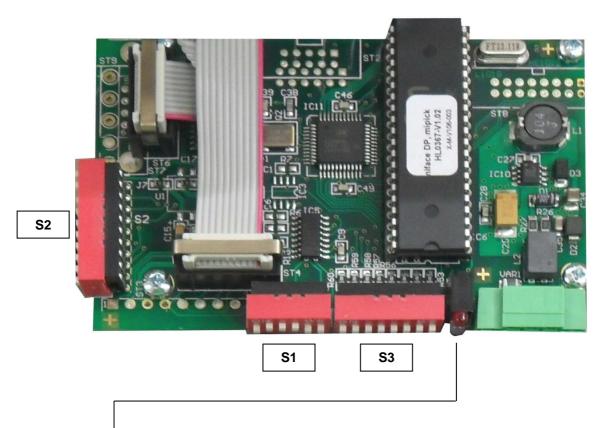
Standard setting: DIP2, 4 = ON, remaining switches = OFF

Switch S2: RS485 Bus Termination


DIP	ON	OFF
1		
2		
3		
4	•	
5	Bus termination is set	No bus termination
6	Bus termination is set	No bus termination

Standard setting: DIP1 = OFF, remaining switches = ON

The bus termination must be set, if the interface is connected at the first position within the RS485 bus.



2.2.1 Distribution Unit for Profibus DP

Interface Profibus / mipick

LED	Status	Meaning	
	off	Profibus DP connection established	
	on	no cyclical Profibus DP communication	
	on	or RAM error (if green LED is off)	
red (FAULT)	blinking	no RS485 response (within the last 500 ms) or RS485	
		communication stopped, because a new status message is	
		existent and the former status message has not been con-	
		firmed (DP-OUT-QBS must be set to DP-IN-TBS)	
	off	Controller is not working (hardware error)	
green (RUN)	on	Controller is working	
green (NON)	short off	Profibus DP toggle byte was changed	
	(flickering)	(command or status message transmitted)	

Positions marked with "■" are fixed and must not be changed!

Switch S1: RS485 Bus Termination

DIP	ON	OFF
1		
2	•	
3		
4		
5	Bus termination is set	No bus termination
6	Bus termination is set	No bus termination

Standard settings: DIP1 = OFF, remaining switches = ON -> RS485 bus termination is set

Switch S2: DP Address, DP Bus Termination

DIP	Function		
1	DP address Bit 2º (ON = 1)		
2	DP address Bit 21 (ON = 2)		
3	DP address Bit 2 ² (ON = 4)		
4	DP address Bit 2 ³ (ON = 8)		
5	DP address Bit 24 (ON = 16)		
6	DP address Bit 2 ⁵ (ON = 32)		
7	DP address Bit 2 ⁶ (ON = 64)		
8	reserved (= OFF ■)		
9	both ON: Profibus bus termination set		
10	both OFF: no Profibus bus termination		

Only DP addresses 0...126 are allowed.

Standard settings: DIP1, 2 = ON, remaining switches = OFF -> Profibus address = 3, no Profibus bus termination

Switch S3: Options

DIP	ON	OFF
1	Test mode: All displays show their own RS485 address or the LED is switched on (if no displays available). There should not be Profibus communication at the same time!	Normal mode
2	Use 128 RS485 addresses (0127) for the RS485 cycle, enable the bus message C2	Use 64 RS485 addresses (063) for the RS485 cycle, bus message C2 locked
3	Transmit every status message immediately (separately) to the DP master (-> easier handling but slower)	Accumulate status messages until DP-IN buffer is full or the current polling cycle is finished.
4	Send bus member messages (C1, C2) automatically at a change (and after power-up and every restart of DP communication	Send bus member messages (C1, C2) only at a query (C0, C1 or C2)
5		
6		
7		
8		

Standard setting: DIP2, 4 = ON, remaining switches = OFF

2.3 Pick Displays

Technical Data

Display type: 7 segment LED

Character height: 29 mm Digits: on request

Display colour: red, green and on request

Operating voltage: 10 to 12 VDC, depending on variant up to max 360 mA, depending on variant

Display: LED, 0 to 9, ASCII character set + special characters

Addresses: 0 to 99

Safety push button: metal design

mechanical service life: 1,000,000 cycles

diameter: 12 mm

individually replaceable

Signal lamp: LED (red, green)

LED diameter: 10 mm

Metal mount

Individually replaceable aluminium, anodized

Shaft depth: 30 mm

Housing colour: natural or coloured, anodized

Mounting: snap-on mounting Protection: front panel up to IP54

Operating temp.: 0 to 50 °C Storage temp.: -25 to +70 °C

Example:

Housing:

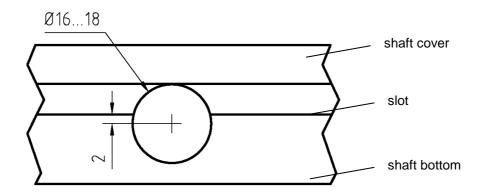
Address Setting

All pick displays of a line must have an explicit address. For this, a DIP switch at the backside is used.

Switch	Address	OFF	ON
DIP 1	20	0	1 _D
DIP 2	2 ¹	0	2 _D
DIP 3	2 ²	0	4 _D
DIP 4	2 ³	0	8 _D
DIP 5	24	0	16 _D
DIP 6	2 ⁵	0	32 _D
DIP 7	2 ⁶	0	64 _D
DIP 8	-	-	-

Please see labeling of the DIP switch for the ON / OFF position.

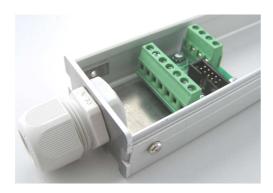
3 Assembly


3.1 Shaft Machining

The following machining must be done before the mounting of the shaft:

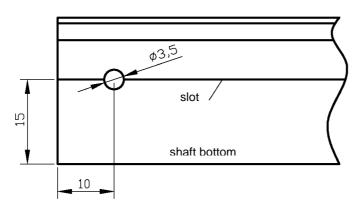
3.1.1 Light Sensor (optional)

Machining:


Mounting:

The holder is mounted with two screws or rivets (if possible).

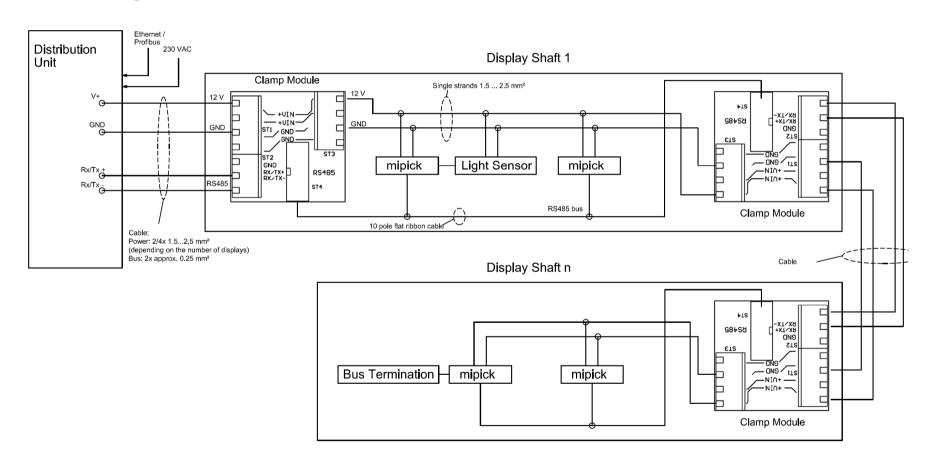
3.1.2 Shaft Termination / Clamp Module


Every shaft is terminated. For this, covers with and without cable entries are available:

Covers with cable entry have four screw sockets for the mounting of the clamp module. The clamp module splits the incoming cable to a flat ribbon cable and single conductors. Depending on the locality, it can be necessary to insert a second clamp module at the shaft end which bundles the conductors again in order to get to the next shaft.

Hole pattern:

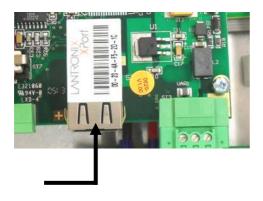
3.2 Mounting the Shaft


The mounting of the display shaft happens with holes in the shaft bottom. Please use enough fixing points for adequate stability.

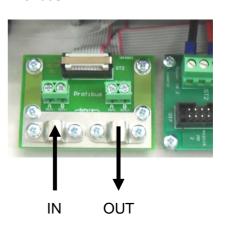
3.3 Mounting the Distribution Unit

The distribution unit is mounted with 4 screws M8 via holes in the housing bottom.

4 Wiring

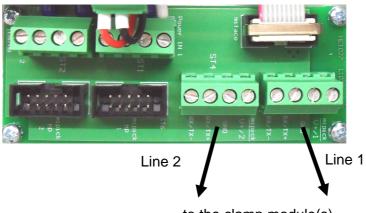

4.1 Distribution Unit

Supply Power (230 VAC)



System Interface

Ethernet:



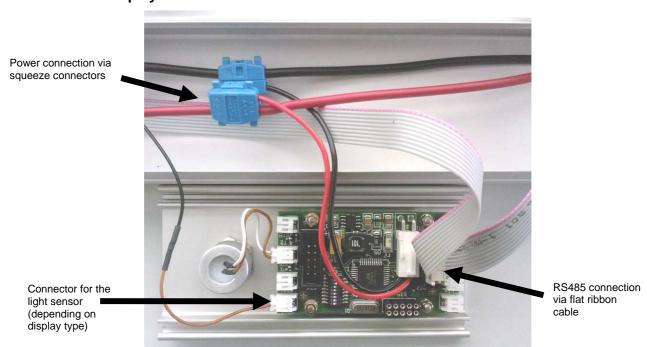
Profibus DP

Display Interface

Supply power and RS485 bus for both display lines

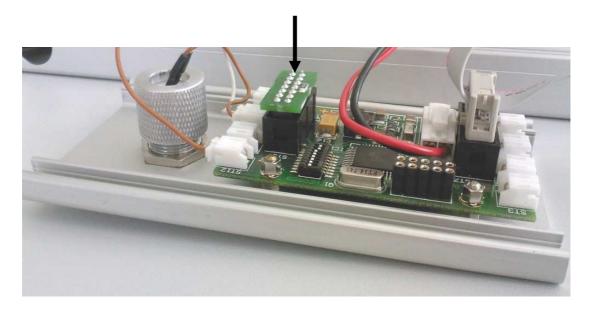
to the clamp module(s)

4.2 Clamp Module


The connections V+ and GND of the distribution unit are connected to the +VIN and GND terminals of the clamp module.

RX/TX+ and RX/TX- of the distribution unit are connected to the RX/TX+ und RX/TX-terminals of the clamp module.

From here we continue with a 10-pole flat ribbon cable for the RS485 and single conductors for the supply power of the displays:


4.3 Pick Displays

4.4 Bus Termination Board

The last pick display of a line is equipped with a bus termination board. This board is plugged at its free RS485 connection (10-pole flat ribbon connector):

4.5 Light Sensor (optional)

The power is taken from the continuous strand via squeeze connectors (like the pick displays).

The signal line of the sensor is connected to the related pick display.

5 Ethernet

5.1 Configuration of the Ethernet Interface

The distribution unit is preset with the following network settings:

IP address: 192.168.4.200 Net mask: 255.255.255.0

Port: 10001

To change these parameters, proceed as follows:

Advice for Windows 7 users:

The Telnet client must be activated:

Start -> Control Panel -> Programs -> Turn Windows features on or off
-> Telnet Client

- Switch on the supply power and connect the distribution unit to the network hub with an RJ45 cable (1:1 cable) or directly to a PC (crosslink cable).
- Start the "MS DOS entry prompt" at your Windows PC.
 With Windows 7 you must have extended rights:
 Start -> All Programs -> Accessories -> double-click at Command Promp -> Run as Administrator
- Enter the desired IP address for the device to the ARP table:
 ARP -S XXX.XXX.XXX.XXX xx-xx-xx-xx-xx <CR>

XXX.XXX.XXX : desired IP address

xx-xx-xx-xx-xx : Ethernet MAC address of the interface

(see label at the housing)

 Establish a Telnet connection to port 1: TELNET XXX.XXX.XXX 1 <CR>

This connection will fail (disconnect within 3 seconds). However, the IP address of the interface is temporarily changed.

Close the Telnet window after acknowledging the error message.

Establish a Telnet connection to port 9999:
 TELNET XXX.XXX.XXX 9999 <CR>

After the connection has been established, <u>immediately</u> press the enter key (within 5 seconds) in order to enter the setup mode.

- Please do never select "7" (Defaults). Those settings do not match for the system.
- Enter "0" (Server).
- Enter the desired IP address and press the enter key.
- Repeatedly press the enter key until "Your choice?" appears.
- Press "9" to save all settings (-> the Telnet connection is interrupted).

Configuration of the Ethernet interface is now complete. Now, the control frame can be transmitted via the selected IP address (TCP/IP connection via port 10001).

5.2 Ethernet Communication

The Ethernet interface of the distribution unit serves for the communication between a controller (for example PC or PLC) and the mipick devices.

"Commands" are sent from the controller to the interface via Ethernet and then forwarded to the particular mipick devices.

"Status messages" are sent from the mipick devices to the interface via RS485 and then forwarded to the controller via Ethernet.

The Ethernet interface acts as bus master at RS485 side.

As long as no "commands" are available, the bus-sharing units (mipick devices) are polled cyclically (order: address 0 to 63, 0 to 63, ... or 0 to 127, 0 to 127,...). If there happens an event at this (for example "button was pressed"), the mipick replies with a corresponding frame and then a related "status message" is sent via Ethernet.

If there is a "command" available for a certain RS485 address, it is sent to the bussharing unit instead of the polling frame. The response of the mipick device is acknowledged via the Ethernet.

If there is identified that a new bus-sharing unit was added or a former existing bus sharing unit does not respond (correctly), a special frame is received via the Ethernet. The controller can explicitly request this "bus member message" in order to get the current bus status.

"Commands" and "status messages" are described (generally and in combination with the relating display) in the following chapters. They have the following structure:

Α	L	D
Address of RS485 device	Length of the data	D ata
1 Byte	1 Byte	120 Bytes

5.2.1 Transmit "Commands"

The transmission of the "commands" happens from the controller to the Ethernet interface and then via a RS485 bus to the concerning mipick devices.

With every TCP/IP frame, one ore several commands (without gap) are transmitted to the Ethernet interface. Every command has the structure "address", "length", "data".

A new command must only then be sent to a certain address, if the last command has been answered or at least approximately 1 second has elapsed. Then, the bus member has not answered or not answered correctly.

After a "broadcast command" you have to wait for the command confirmations first (one per existing bus member) before you send a new command. 1 second is enough.

<u>Please note:</u> If you wait for several command confirmations, they must not necessarily arrive in the same order like the corresponding commands have been sent. It's possible that an "event message" or "bus member message" intervenes between the single command confirmation frames!

Example:

The value "12" shall be shown at display (mipick R324) with address 4:

Send command via TCP/IP (in hexadecimal presentation): 04 05 33 31 32 00 00 (address = 4, length = 5 bytes, data = 33 31 32 00 00)

5.2.2 Receive "Status Messages"

There are three types of status messages:

- 1. Command confirmation (= command response)
- 2. Event messages (for example "button was pressed")
- 3. Bus member message ("device removed or added")

Status messages are sent to the controller with a TCP/IP frame. Every TCP/IP frame can contain one or more status messages (without gap). Every status message has the structure "address", "length", "data".

Examples:

a) Command confirmation to the command above:

Receive the status message "command confirmation" via TCP/IP (in HEX representation): 04 01 33 (address = 4, length = 1, data = 33)

b) Button of display 4 was pressed short:

Receive the status message "event message" via TCP/IP (in HEX representation): 04 03 00 01 0C (address = 4, length = 3, data = 00 01 0C)

<u>Note:</u> Only one status message is transferred in the examples above but if there are several status messages, they are received simultaneously.

6 Profibus DP

6.1 Configuration of the Profibus Interface

6.1.1 **GSD File**

The device database file "micr05D0", which is part of the delivery, is used for the integration of the Profibus DP interface (DP slave) to the Profibus. Among other things, it contains the necessary identifiers for the configuration of the input-output data widths (see next chapters).

6.1.2 Configuration Data

With the configuration, the user has the possibility to set an individual data width of the cyclic data exchange. Therefore, the following identifiers (max. 30) must be selected in any desired order.

The DP master transmits the identifier to the DP slave before it starts the cyclic data exchange.

Data identifier	Number of bytes	Function / Description
0x10	1	Input Data
0x11	2	Input Data
	•	
0x1F	16	Input Data
0x20	1	Output Data
0x21	2	Output Data
:	:	
0x2F	16	Output Data
0x30	1/1	Input-/Output Data (1 byte each)
0x31	2/2	Input-/Output Data (2 bytes each)
:		
0x3F	16/16	Input-/Output Data (16 bytes each)
	0x10 0x11 : 0x1F 0x20 0x21 : 0x2F 0x30 0x31 :	0x10 1 0x11 2 : : 0x1F 16 0x20 1 0x21 2 : : 0x2F 16 0x30 1/1 0x31 2/2 : :

The minimum number of input or output bytes is 6 bytes each.

The maximum number of input or output bytes is 200 bytes each, but an overall length of 300 bytes (input + output) must not be exceeded.

⇒ Standard configuration: 0x3F, 16 input-/ output bytes.

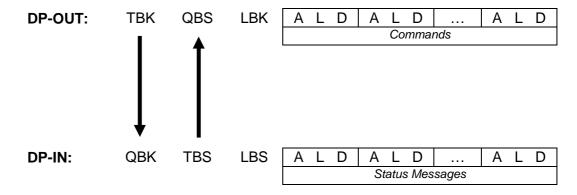
6.1.3 User Parameter Data

User parameter data are not utilized by the interface. However, a test is run to determine whether or not the Profibus master transfers user parameter data. If user parameter data are transferred, Profibus initialization is disabled and the slave's parameters must be reconfigured.

Note:

Standard parameters configuration is required and is normally installed by the utilized DP configurators.

6.1.4 Diagnosis Data


The interface does not support any extended diagnosis data. Default diagnosis is utilized.

6.2 DP Communication

The DP master handles the Profibus interface (DP slave) as a standard I/O device. This means, there are DP output data, which are cyclically transmitted to the slave and DP input data, which are cyclically received from the slave.

The structure of those I/O data is like follows:

TBK: Toggle byte for the commands

QBK: Confirmation byte for the commands (= TBK after data adoption)

LBK: Length byte for the commands

TBS: Toggle byte for the status messages

QBS: Confirmation byte for the status messages (= TBS after data adoption)

LBS: Length byte for the status messages

A: Address of the RS485 bus sharing unit (pick display)

L: Length of the data
D: Data (max. 20 bytes)

Notes:

After the (new) start of the Profibus DP communication, all DP OUT bytes and all DP IN bytes have the value 0.

With the help of the configuration, the number of DP IN bytes and DP OUT bytes must be chosen leastwise as large, that the largest possible command or the largest possible status message has enough space. The maximum I/O width must not be exceeded (see chapter "configuration data").

6.2.1 Transmit "Commands"

The "commands" specify, what shall be shown at the displays or how they shall behave. The transmission of the commands happens from the DP master to the Profibus interface (DP slave) and from here via the RS485 bus to the respective displays.

Procedure:

- 1. In the DP OUT area "commands", you must enter the command or even several commands (without gap). Every command consists of "address", "length" and "data".
- 2. The length of all command bytes must be entered at "LBK".
- 3. Finally, "TBK" is increased by one value.
- 4. Now, the DP slave starts to evaluate the commands and forward it to the corresponding displays. After this procedure is finished, the "QBK" is set to the value of the previous changed "TBK".
- 5. If there are further commands, you can continue with point 1.

Example:

The value "12" shall be shown at display 4 (mipick R324):

1. Input the command:

2. Set "LBK":

3. Increase "TBK":

4. Wait for "QBK":

6.2.2 Receive "Status Messages"

There are three types of "status messages":

- 4. Command confirmations (= command response)
- 5. Event messages (for example "button has been pressed")
- 6. Bus member messages ("device has been removed/added")

The status messages must be fetched from the DP master as fast as possible, otherwise the RS485 communication with the displays can slow down or even stop (until the status messages are fetched)!!!

Procedure:

- 1. If the "TBS" changes, there are status messages available for pickup.
- 2. Now, the status messages to be fetched are available in the DP IN area "status messages" (without gap, overall "LBS" bytes). Every status message consists of "address", "length" and "data".
- 3. After the status messages have been read out, the DP master must set the "QBS" to the value of "TBS". This should happen as fast as possible (in order not to slow down the RS485 communication).
- 4. Continue with point 1.

Examples:

a) Command confirmations to the command above:

1. "TBS" changes:

```
DP-IN(hex) = XX 00 XX XX XX ... -> DP-IN(hex) = XX 01 03 04 01 33
```

2. Read out the status message:

```
"LBS" = 3
"Address" = 4
"Length" = 1
"Data" = 33<sub>H</sub> (command confirmation)
```

3. Set "QBS" to the value of "TBS":

b) Button of display 4 was pressed short:

1. "TBS" changes:

```
DP-IN(hex) = XX 01 XX XX XX ...
->
DP-IN(hex) = XX 02 05 04 03 00 01 0C
```

2. Read out the status message:

```
"LBS" = 5 

"Address" = 4 

"Length" = 3 

"Data" = 00_H 01_H 0C_H (event message: button pressed short, display value = "12")
```

3. Set "QBS" to the value of "TBS":

```
DP-OUT(hex) = XX 02 XX XX XX ...
```

Note:

In the examples above, only one status message is transmitted at once.

If there are more status messages available, they are transmitted at the same time in order to utilize the available DP IN bytes as far as possible and accelerate the communication.

If DIP switch S3-3 is in ON position, every status message is reported separately (to simplify the evaluation at the DP master side).

7 Frame Structure

7.1 Structure of Commands

		Data			
Address	Length	Command	1 th Parameter	Parameter	n th Parameter
0 to 127, 255*	Number of following bytes	for example 33 _H = "control display"			

^{*}Address = 255: broadcast command:

This command is sent to all possible bus addresses (0...63 or 0...127). Only the really existing MIPICKS of the bus, which are supported by the command, evaluate it and respond with a "command confirmation".

7.2 Structure of Status Messages

7.2.1 Command Confirmation

			Data			
	Address	Length	Command confirmation	Possible response data		
◀	0 to 127	>= 1	for example 33н			

Every command is receipted with a command confirmation. With this, the complete communication cycle from the controller to the MIPICKS and back again is guaranteed. If necessary, response data from the MIPICK is forwarded.

7.2.2 Event Message

			Data				
◀	Address	Length	Event	Status byte	1 th Parameter	Parameter	n th Parameter
,			message				
	0 to 127	Number of following bytes	00 н	Contains (bit- coded) information to the event, that happened	Additional event (if the status byte		

All existing MIPICKs of the RS485 bus (addresses 0 to 63 or 0 to 127) are always polled. If the "status byte" in unequal to 0 OR at least an additional "parameter byte" is received, an event is available. It is forwarded from the interface to the controller then.

7.2.3 Bus Member Message

			Data		
Address	Length	Bus Member Message	BTN0	BTN	BTN7
255 (comes directly from the	9	C1 _H (bus addresses 0 to 63)	Bus member states of the addresses 0 to 7 or 64 to 71:		Bus member states of the addresses 56 to 63 or 120 to 127:
interface)		C2 _H (bus addresses 64 to 127, only if 128 addresses are set with DIP switch)	(bit 0 to 7) 1 = device available, 0 = device not available		(bit 0 to 7): 1 = device available, 0 = device not available

The bus member messages can be requested by transmitting the following "interface commands":

		_	Data
>	Address	Length	"Interface Command"
	255	1	С1н:
	(directly to the		Request bus member message C1н
	interface)		C2 _H :
			Request bus member message C2 _H (if 128 addresses)
			СОн:
			Request bus member messages C1 _H and C2 _H (if 128 addresses)

If the corresponding DIP switch is in position "ON", the bus member messages are sent automatically \dots

- after every change (new bus member identified or not available anymore)
- every restart of the communication = establishing the Profibus connection (after completion of the currently running polling cycle).

7.3 General Frames

The following frames proceed basic functions and are supported by most displays.

7.3.1 Show Address

Command:

1	2	3
Address	Length	Command
0 to 127,	1	01
255 = Broadcast	ľ	OTH

Command confirmation:

1	2	3
Address	Length	Command
0 to 127	1	01н

7.3.2 Delete Display

Command:

1	2	3
Address	Length	Command
0 to 127,	1	02
255 = Broadcast		UZH

Command confirmation:

1	2	3
Address	Length	Command
0 to 127	1	02н

7.3.3 Query Device Type

Command:

1	2	3
Address	Length	Command
0 to 127,	1	03
255 = Broadcast	Į.	USH

Command confirmation:

1	2	3	4
Address	Length	Command	Device type
0 to 127	2	03н	= command byte

7.3.4 Lamp Test

Command:

1	2	3	4
Address	Length	Command	Lamp text
0 to 127, 255 = Broadcast	2	04н	01 _н = start 00 _н = stop

Command confirmation:

1	2	3
Address	Length	Command
0 to 127	1	04н

7.3.5 Query Display Content

Command:

1	2	3
Address	Length	Command
0 to 127, 255 = Broadcast	1	05н

Command confirmation:

1	2	3	4	
Address	Length	Command	Digit 1	
			ASCII code	,,
0 to 127	V	05н	or	
0 10 127	^	USH	real value (then, from MSB	
			to LSB if valuation > 255)	

Note:

The number of display and the visualisation (ASCII or binary) can vary depending display type.

7.3.6 Query Software Version

Command:

1	2	3
Address	Length	Command
0 to 127, 255 = Broadcast	1	06н

Command confirmation:

1	2	Data			
Address	Length	Command			
0127	13	06н	'H'	'L'	ASCII code

Data					
ASCII code	ASCII code	ASCII code	·_'	'V'	ASCII code

Data				
٠,	ASCII code	ASCII code		

7.4 Device-Specific Frames

The device-specific frames can be found in the separately enclosed frame description.

Example: mipick R225

Command:

1	2	3	4	5
Address	Length	Command	Digit 1	Digit 2
0 to 127	6	49 _H	Bit 0 to 6: ASCII code 30 to 39 _H	"
255 = Broadcast	O	4 9H	Bit 7=1: Decimal point ON	

6	7
Options 1	Options 2
Bit 0=0: LED on	
=1: LED off	
Bit 1=1: LED blinks slow	Bit 0=1: Disable LED automatically, if confirmation button is pressed
Bit 2=1: LED blinks fast	Bit 1=1: Disable display automatically, if confirmation button is pressed
	Bit 2=1: Disable LED automatically, if button "Ø" is pressed
Bit 3: reserved (=0)	Bit 3=1: Disable display automatically if button "Ø" is pressed
	Bit 4=1: Disable LED automatically, if button "INV" is pressed
Bit 4=1: Display blinks slow	Bit 5=1: Disable display automatically, if button "INV" is pressed
Bit 5=1: Display blinks fast	
	Bit 6=0: Suppress leading zeros
Bit 7, 6: Brightness:	=1: Enable leading zeros
00 = bright	
01 = :	Bit 7: reserved (=0)
10 = :	
11 = dark	

8				
Optionen 3				
Bit 0=1: +/- buttons locked				
Bit 1=1: +/- buttons count unlimited (099) =0: +/- buttons count from 0 to preset value				
Bit 2 to 7: reserved (=0)				

Command Confirmation:

1	2	3
Address	Length	Command
0 to 127	1	49н

Event Message:

1	2	3	4	5
Address	Length	Event Message	Status byte	Value
0 to 127	2/3	00 н	Bit 0=1: Confirmation button was pressed Bit 1=1: Confirmation button was pressed 2 seconds at least Bit 2=1: Button "Ø" was pressed Bit 3=1: Button "Ø" was pressed 2 seconds at least Bit 4=1: button "INV" was pressed Bit 5=1: button "INV" was pressed 2 seconds at least Bit 6=1: LED error Bit 7=1: Display error	Only if any button has been pressed (at least one of the bits 0 to 5 of the status byte = 1) 0 to 99

Response after Query the Display Content:

1	2	3	4
Address	Length	Command	Value
0 to 127	2	05⊨	0 to 99

8 Versions Overview

Version	Date	Remarks, Descriptions
1.00 1.10 1.20 1.30	03.08.09 17.01.11 08.02.11 31.03.14	Remarks, Descriptions Document created (German language) Document translated Chapter "Device-Specific Frames" changed (R225) Interface (Ethernet, Profibus) changed

Certified per DIN EN ISO 9001.